Strang splitting for a semilinear Schrödinger equation with damping and forcing
نویسندگان
چکیده
منابع مشابه
Strang Splitting for the Time-Dependent Schrödinger Equation on Sparse Grids
The time-dependent Schrödinger equation is discretized in space by a sparse grid pseudo-spectral method. The Strang splitting for the resulting evolutionary problem features first or second order convergence in time, depending on the smoothness of the potential and of the initial data. In contrast to the full grid case, where the frequency domain is the working place, the proof of the sufficien...
متن کاملStrang Splitting Methods for a Quasilinear Schrödinger Equation - Convergence, Instability and Dynamics
We study the Strang splitting scheme for quasilinear Schrödinger equations. We establish the convergence of the scheme for solutions with small initial data. We analyze the linear instability of the numerical scheme, which explains the numerical blow-up of large data solutions and connects to analytical breakdown of regularity of solutions to quasilinear Schrödinger equations. Numerical tests a...
متن کاملFrictional versus Viscoelastic Damping in a Semilinear Wave Equation
In this article we show exponential and polynomial decay rates for the partially viscoelastic nonlinear wave equation subject to a nonlinear and localized frictional damping. The equation that model this problem is given by utt − κ0∆u + ∫ t 0 div[a(x)g(t− s)∇u(s)] ds + f(u) + b(x)h(ut) = 0 in Ω× R, (0.1) where a, b are nonnegative functions, a ∈ C(Ω), b ∈ L∞(Ω), satisfying the assumption a(x) +...
متن کاملAvoiding order reduction when integrating nonlinear Schrödinger equation with Strang method
In this paper a technique is suggested to avoid order reduction when using Strang method to integrate nonlinear Schrödinger equation subject to time-dependent Dirichlet boundary conditions. The computational cost of this technique is negligible compared to that of the method itself, at least when the timestepsize is fixed. Moreover, a thorough error analysis is given as well as a modification o...
متن کاملStrang Splitting Methods Applied to a Quasilinear Schrödinger Equation - Convergence and Dynamics
We study numerically a class of quasilinear Schrödinger equations using the Strang splitting method. For these particular models, we can prove convergence of our approximation by adapting the work of Lubich [30] for a Lie theoretic approach to the continuous time approximation and Sobolev-based well-posedness results of the second author with J. Metcalfe and D. Tataru in order to model small in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2017
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2017.06.004